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Abstract. On–off intermittency is an ubiliquitous phenomenon observed beyond the instability
of a particular chaotic motion. The system below the instability reveals a typical transient chaos.
It is found that near the instability point the inverse characteristic first passage timeα satisfies
the scaling lawα = (λ2

⊥/4D⊥)g(|λ⊥|/|λ∗⊥|) with the transverse Lyapunov exponent (TLE)
λ⊥(< 0), λ∗⊥ andD⊥ being respectively an initial condition-dependent characteristic TLE and
the fluctuation intensity of local transverse expansion rate. Numerical simulation for several
systems suggests that the scaling functiong(z) is a universal function.

1. Introduction

Intermittency is a typical, highly nonlinear phenomenon and is observed in any field of
nonlinear science. In low-dimensional dynamical systems, three types of intermittent
temporal evolution of dynamical variable were established by Pomeau and Manneville
in connection with the instability of periodic trajectories [1]. Recently a different kind
of intermittency, due to the instability of a particular chaotic motion, has attracted much
attention [2–15]. In contrast to that, the PM intermittency is observed after the instability
of periodic orbits, this intermittency is observed when a particular chaotic state becomes
unstable. This intermittency is called theon–off intermittencyafter the specific temporal
evolution of dynamical variables, and is observed not only in numerical simulations [2–11]
but also in laboratory experiments, expecially in electronic circuits [12–15].

Although many studies have recently been carried out to clarify the statistical
characteristics of the on–off intermittency, less contribution is performed on the other
side of on–off intermittency. Below the on–off intermittency transition called the blowout
bifurcation in [7], the system exhibits a typical transient chaos. The fundamental aim of this
paper is to report a new statistical law characterizing the transient below the intermittency
transition.

The paper is organized as follows. In section 2, the onset mechanism and the statistical
characteristics of on–off intermittency are briefly reviewed. In section 3, introducing the
first passage time which characterizes the transient, we propose a new scaling law for
the characteristic first passage time slightly below the transition. Carrying out numerical
simulations of several models, we will show that the scaling property is an ubiquitous
phenomenon associated with the precursor of on–off intermittency. Concluding remarks are
given in section 4.
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2. On–off intermittency—Onset mechanism and statistics

Let us consider the combined system of dynamical variablesX andu,

Ẋ(t) = F (X(t))+ f(X(t),u(t)) (2.1a)

u̇(t) = g(X(t),u(t)) (2.1b)

whereF (X) is a nonlinear function ofX, andf andg are analytical functions ofX and
u, satisfying

f(X, 0) = g(X, 0) = 0 (2.2)

for any choice ofX and parameter values. The equations of motion (2.1) yield the particular
motion obeying

Ẋ0(t) = F (X0(t)) u0(t) = 0. (2.3)

For the coupled oscillator system (equation (3.3)),X stands for average variables of
two oscillators andu is the difference of two variables. In the Ott–Sommerer model
(equation (3.5)),X is the variables(x, ẋ) andu is (y, ẏ). The region in the phase space,
where the phase point is given by (2.3) is hereafter called theinvariant manifold.

The stability of the particular motion (2.3) is examined by observing how the distance
from the invariant manifold changes in time. Let us define two variablesu‖ andu⊥ by

u̇µ(t) = Ĝµ(t)uµ(t) (µ =‖,⊥) (2.4)

with the perturbation matrices

Ĝ‖(t) = ∂F (X)

∂X
|X=X0(t) Ĝ⊥(t) = ∂g(X0(t),u)

∂u
|u=0. (2.5)

By putting lµ(t) = |uµ(t)|, (2.4) yields

l̇µ(t) = 30
µ(t)lµ(t). (2.6)

l‖(t) evaluates the nearby distance on the invariant manifold. We introduce two exponents
λ‖ andλ⊥ by

λµ = lim
t→∞

1

t
log

lµ(t)

lµ(0)
= lim

t→∞
1

t

∫ t

0
30
µ(s) ds. (2.7)

The exponentλ‖ is relevant to the trajectory stability on the invariant manifold, and is
identical to the ordinary largest Lyapunov exponent of the dynamicsẊ = F (X). On the
other hand, sincel⊥(t) evaluates the distance of the phase point from the invariant manifold,
λ⊥ measures the stability of the particular motion obeying (2.3).λ⊥ is called thestability
parameteror the transeverse Lyapunov exponent(TLE). Let us put

30
⊥(t) = λ⊥ + f (t) (2.8)

where λ⊥ is the average, being identical to that in (2.7), andf (t) is the fluctuation of
30
µ(t). The particular motion on the invariant manifold being set to be chaotic (λ‖ > 0),

the fluctuationf (t) is assumed to have a mixing property. The quantity

D⊥ ≡
∫ ∞

0
〈f (t)f (0)〉 dt (> 0) (2.9)

measures the intensity of the fluctuation of thelocal transverse expansion rate(LTER)
30
µ(t). Althoughλ⊥ changes its sign at the instability point, it is expected that the fluctuation

statistics of30
⊥(t) is not sensitive to the distance from the intermittency transition. So, we

assume thatD⊥ is constant near the instability point†. For λ⊥ < 0 (> 0), the particular

† The quantityD‖ ≡
∫∞

0 〈(30
‖(t)−λ‖)(30

‖(0)−λ‖)〉 dt measures the intensity of the fluctuation of local expansion

rate on the invariant manifold, i.e. on the strange attractor for the dynamicsẊ(t) = F (X(t)).
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Figure 1. (a) The temporal evolution of on–off intermittency variablevn ≡ X
(1)
n − X(2)n in

the coupled logistic map system (3.3) witha = 3.8 andK = 0.4271, (λ⊥ = 0.0050) after a
sufficiently long transient. (b) The blow-up of (a) and (c) is the blow up of (b). These manifest
a self-similar evolution of on–off intermittency variable.

motion is stable (unstable). Forλ⊥ < 0, the phase point eventually approaches the invariant
manifold.

It is well known that after the instability of the particular chaotic motion as the external
control parameter is changed, the system usually exhibits the on–off intermittency (see
figure 1). Phenomenologically necessary conditions on the onset of on–off intermittency
are summarized as follows. The first is that TLE changes its sign from nagative to positive
[2–4]. The second is that LTER, whose statistical average is TLE, exhibits a fluctuation
in the sense thatD⊥ takes a positive, finite value. In [2], we studied the breakdown of
the synchronization in a coupled map system whose elements consisted of fully developed
logistic parabola. Since the fully developed logistic parabola is transformed into the tent
map, the quantityD⊥ rigorously vanishes. We did not observe the on–off intermittent
characteristics. Thirdly, the transition should be continuous in the sense that all statistical
quantities continuously change at the transition point. It is remarked that the breakdown
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of the particular solution as the control parameter is changed does not necessarily lead to
the on–off intermittency. Previously we studied the breakdown of the synchronization in
the coupled chaos system whose elements consist of the Lorenz model [16]. For certain
parameter values, after the breakdown of the synchronization we observed that the system
falls into a fixed point. The transition is discontinuous and a hysteresis is observed.

In order to study the statistical law of the on–off intermittency we phenomenologically
introduce the stochastic model for the distancel(t) of the phase point from the invariant
manifold. Assume thatl(t) obeys [17, 18]

l̇(t) = 3⊥(t)l(t) (2.10)

3⊥(t) = λ⊥ + f (t)− βl(t)m. (2.11)

Hereλ⊥ andf (t) are same as in (2.8),β is a positive constant andm is a positive integer.
Furthermore, in order to make the problem tractable,f (t) is assumed to be a Gaussian-
white noise with zero mean and the intensityD⊥ (equation (2.9)). This makes the problem
complete. Statistical laws known until now for the on–off intermittency can be derived
from the multiplicative noise model [17, 18]. Namely, the distribution forl(t), the distance
from the invariant manifold, takes the power law

P(l) ∼ l−1+η η = λ⊥
D⊥

(2.12)

for small l. The spectral intensity for the time series{l(t)} obeys the power law

I (ω) ∼ ω− 1
2 (2.13)

for smallω [17, 18, 7, 8]. Furthermore, the laminar length distributionQ(τ) [6] obeys

Q(τ) ∼ τ− 3
2 . (2.14)

Very recently, Hata and Miyazaki [19] constructed a solvable dynamical model of on–off
intermittency, and rigorously found the power law (2.12) and the asymptotics (2.14). It
seems that (2.14) is a universal law. We recently found that in a four-dimensional coupled
map system the exponent slightly changes as a function of the control parameter [10], and
slightly increases as the intermittency develops. This may suggest the variety of universality
classes of on–off intermittency.

3. Transient below the intermittency transition

On the other side of the on–off intermittency, i.e. below the transition (λ⊥ < 0) the system
eventually approaches the particular chaos restricted on the invariant manifold withl = 0.
In this process, the system shows a typical transient chaos [20]. Let us introduce the
first passage time(FPT) tFPT when l(tFPT) = lc first holds for a givenlc by starting with
l(0) ≡ l0(> lc). FPT is a function of the initial state. Various initial values produce a
distribution of FPT. Let us define the probability distribution fortFPT as

W(τ) ≡ 〈δ(tFPT− τ)〉. (3.1)

Here, in dynamical systems,〈· · ·〉 is the average over the initial ensemble uniformly
distributed near the on–off intermittency attractor region forλ⊥ < 0 with the constraint
that l0 andlc are given. In the multiplicative noise model, the average should be taken over
a whole realization of random noise for givenl0 andlc. Figure 2 displays the distribution of
initial-state points giving different lengths of FPT. One finds a complicatedriddled structure
in the state space [7, 21]. Namely, an infinitesimal change of the initial condition produces a
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Figure 2. (a) FPT distribution as a function of initial point(X(1)0 , X
(2)
0 ) for the coupled logistic

map system (3.3) slightly below the on–off intermittency transition, (a = 3.8, K = 0.433>
Kc(= 0.4321), lc = 10−3). Black points correspond to initial points giving FPT longer than 20.
(b) The blow-up of (a). In each figure, 103× 103 initial points were prepared. A slight change
of the initial condition causes a huge change of first passage time. This is called the riddled
structure of geometrical structure in the state space.

huge difference of FPT, (sensitive dependence of FPT and the transverse Lyapunov exponent
over a time interval on initial condition).

Figure 3(a) displays how the distribution changes by changinglc and the control
parameter by keepingl0 fixed. One finds that the distribution has a single peak and its
position and width depend on both the initial distancel0 and the final distancelc as well
as the distance of the control parameter from the instability point. The transient process is
characterized by the FPT distribution. The distribution for relatively short times crucially
depends on the system under consideration, and is not universal. On the other hand, it takes
the exponential form

W(τ) ∝ e−ατ (3.2)

for large τ , whereα−1 is the characteristic FPT.α characterizes the transient process on
the other side of the on–off intermittency and reflects the chaotic dynamics of the particular
motion, and generally depends onl0, lc andλ⊥ (< 0) which evaluates the distance from the
transition point. Figures 3(b) and 3(c) roughly show howα changes depending onlc and
λ⊥. α is approximately independent oflc if |λ⊥| is appropriately large, whileα crucially
depends onlc provided that|λ⊥| is sufficiently small.

Hereafter we will discuss howα depends onlc and λ⊥ near the instability point by
carrying out numerical simulations by keepingl0 a typical value for simplicity. Numerical
models are given below. These models can be transformed into the standard form (2.1)
with a linear transformation, and show on–off intermittency.
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Figure 3. FPT distributions for different values oflc andK in the coupled logistic map system
(3.3) with a = 3.8. We put l0 = 10−2. The inverse characteristic FPT,α, is independent of
lc sufficiently below the transition point(K > Kc)((b)), and depends onlc near the transition
point(K ≈ Kc)((c)).

3.1. Model A. Coupled map system

Consider the coupled map system [22, 23]

X
(j)

n+1 = F(X(j)n )+ ξ
2∑
l=1

{F(X(l)n )− F(X(j)n )} (j = 1, 2) (3.3)

with ξ = (1−e−K)/2, (K > 0)†. The motion on the invariant manifold is the synchronized
oscillationX0

n+1 = F(X0
n). In this paper we use the logistic parabolaF(X) = aX(1− X)

with a = 3.8, whereλ‖ = 0.4321. TLE is given by

λ⊥ = λ‖ −K (3.4)

† For coupled map systems, the standard form (2.1) is written asXn+1 = F (Xn)+f(Xn,un),un+1 = g(Xn,un)
with f(X, 0) = g(X, 0) = 0. The particular solution always obeysX0

n+1 = F (X0
n),u

0
n = 0. In model (3.3),

puttingXn+1 = (X(1)n +X(2)n )/2, un = (X(1)n −X(2)n )/2, one obtains the standard form.
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where λ‖ is the Lyapunov exponent of the one-dimensional mapXn+1 = F(Xn). If
the system parameter is chosen such thatλ‖ is positive, the system undergoes an on–off
intermittency transition atK = λ‖(≡ Kc) as the coupling constantK is decreased.

3.2. Model B. Ott–Sommerer model

This is the two-dimensional particle motion subject to the external periodic excitation in the
x-direction obeying [8, 9]

r̈(t) = −νṙ(t)−∇U(r)+ f sin(�t)ex (3.5)

U(r) = (1− x2)2+ y2(x − p)+ ky4 (3.6)

wherer = (x, y) is the particle position,ν is the damping constant,k is a non-negative
constant,f and� are respectively the amplitude and the angular frequency of the external
force. The system has a particular motion on thex-axis. When the particular motion
is chaotic, after the instability of the particular motion atp = pc, the particle starts to
intermittently move in they-direction. This shows a typical on–off intermittency. For
parameter valuesν = 0.05, f = 2.3, � = 3.5, k = 0, we obtainpc = −1.7887.

3.3. Model C. Multiplicative noise model

This is given by (2.10) withm = 2 for λ⊥ < 0.

As discussed in the previous section, the statistical characteristics of the on–off
intermittency is well described by the multiplicative noise model (2.10) with (2.11). After
a sufficiently long time for any initial condition,l(t) becomes small. So we first ignore
the nonlinear term with respect to the deviation from the particular motion. Ifl(t) is small
enough, (2.11) is replaced by (2.8). As shown in the theory of first passage time [24, 25],
the normalized distribution for the Gaussian-white random noisef (t) rigorously takes the
form

W0(τ ) = 1√
4πD⊥

log(l0/lc)

τ 3/2
exp

[
− (λ⊥τ + log(l0/lc))2

4D⊥τ

]
. (3.7)

This yields

α = λ2
⊥

4D⊥
. (3.8)

Furthermore, moments are given by

〈τ ν〉0 ≡
∫ ∞

0
τ νW0(τ ) dτ =

(
log(l0/lc)

|λ⊥|
)ν ( 2|λ⊥|

π |λ0
⊥|
)1

2

e|λ⊥|/|λ
0
⊥|Kν− 1

2

( |λ⊥|
|λ0
⊥|
)

(3.9)

where

|λ0
⊥| ≡

2D⊥
log(l0/lc)

(3.10)

is the characteristic value of TLE, andKν(z) is the modified Bessel function. Particularly,
〈τ 〉0 = log(l0/lc)/|λ⊥|. The numerical results ofα for different dynamical models and
the multiplicative noise model are shown in figure 4. Except extremely near the transition
point, the parabolic dependence ofα onλ⊥ holds quite well for all models. The quantitative
disagreement in chaotic dynamical systems may be attributed to the contribution of the finite
range of temporal correlation which is neglected in the stochastic treatment. Sufficiently
near the transition point,α takes a finite valueα0 which is a function ofl0 and lc. It is
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Figure 4. The |λ⊥| dependence ofα for the three models for different values oflc. l0’s are
chosen as 0.01, 1 and 1 respectively for models A, B and C. Straight lines are the asymptotic
law α = λ2

⊥/4D⊥ with D⊥ = 0.057, 0.0154 and 1 respectively for models A, B and C.D⊥’s,
except in model C, were calculated with (2.9). Near transition points, the asymptotic law breaks
down andα depends onlc.

easily understood that the deviation from (3.8) is due to the nonlinear fluctuation effect near
the transition point. In fact, carrying out numerical simulation for a linear multiplicative
noise model, no deviation from (3.8) is observed for any small|λ⊥|.

Let us define the characteristic value of|λ∗⊥| via

α0 = λ∗⊥
2

4D⊥
. (3.11)

|λ∗⊥| evaluates the characteristic value of|λ⊥|. The deviation from the law (3.8) is
remarkably observed for|λ⊥| < |λ∗⊥|. We observed thatα0 monotonously decreases as
lc is decreased. Numerical results† imply that the relation|λ∗⊥| = c|λ0

⊥| approximately

† In the present work,α′0s are evaluated at the smallest|λ⊥| in each graph in figure 4.
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Figure 5. Scaling plots ofα versus|λ⊥| for the three models for different values oflc. All data
in figure 4 are drawn. The figure suggests the validity of the scaling law (3.12), and manifests
the universality of the functiong(z). The full curve is the empirical lawg(z) = (1+ z−1)2.

holds, wherec is a numerical constant between 3 and 4. We thus found two regions of|λ⊥|
yielding different asymptotic dependences ofα on λ⊥, equations (3.8) and (3.11). This may
suggest the possibility of the scaling law ofα,

α = λ2
⊥

4D⊥
g

( |λ⊥|
|λ∗⊥|

)
(3.12)

whereg(z) is the scaling function and should have the asymptotic law

g(z) =
{

1 (z � 1)

z−2 (z � 1).
(3.13)

Figure 5 is the scaling plot ofα for the three models for differentλ⊥ andlc. One finds that
the scaling law (3.12) holds quite well for any combination ofλ⊥ andlc for the above three
different models. In this sense,g(z) is not only a scaling function for a given system but
also a universal function valid for the universality class of on–off intermittency transition.

The existence ofλ∗⊥ is apparently due to the nonlinear fluctuation effect of LTER,
l̇(t)/ l(t). In order to take into account the nonlinear effect with respect to the deviation
l from the invariant manifold, we start with the rigorous equation of motion forl(t) by
l̇(t) = 3⊥(t)l(t). 3⊥ contains nonlinear terms ofl. If l is sufficiently small, the statistics
of 3⊥(t) is identical to that of30

⊥(t) in (2.6). Let us divide3⊥(t) into two parts,

3⊥(t) = λ⊥eff + feff(t) (3.14)

where λ⊥eff is effective TLE under the nonlinear effect andfeff(t) is the fluctuation
part. We assume thatfeff(t) is the Gaussian random force with〈feff(t)〉 = 0 and
〈feff(t)feff(0)〉 = 2D⊥effδ(t). This approximation yieldsα = λ2

⊥eff/4D⊥eff. Since the
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intensity of the fluctuation of FPT is finite near the transition point, one may replaceD⊥eff

by the bare intensityD⊥. Thus we obtain

α = λ2
⊥eff

4D⊥
. (3.15)

Let τ be the time whenl reached the distancelc starting with the initial distancel0(> lc).
One obtains

log
lc

l0
=
∫ τ

0
3⊥(s) ds. (3.16)

Since{3⊥(s)} depends on the initial condition,τ is a function of the initial condition. The
coarse-grained transverse Lyapunov exponent in the transient process is evaluated by

3̄⊥ ≡ 1

τ

∫ τ

0
3⊥(s) ds = log(lc/ l0)

τ
. (3.17)

So, by defining a characteristic timeτeff in a suitable way,λ⊥eff is given by

λ⊥eff = log(lc/ l0)

τeff
. (3.18)

If τeff is replaced by〈τ 〉0, one obtainsλ⊥eff = λ⊥, which implies no contribution from the
nonlinear fluctuation. The deviation ofτeff from 〈τ 〉0 especially near the transition point
changes the law (3.8).

4. Concluding remarks

In this paper we have discussed the statistics of the transient below the on–off intermittency
transition. The first passage time sensitively depends on the initial condition, which
is the origin of the distribution of first passage time. We empirically found a scaling
law for the characteristic first passage time (3.12). The scaling law reflects the
importance of the nonlinear fluctuation of the intermittency variable in the transient
process. Phenomenologically introducing a characteristic timeτeff, we briefly discussed
the renormalization of the effective transverse Lyapunov exponent by nonlinear fluctuation.
At the present stage, we have no theory to determineτeff. The determination ofτeff may
clarify the validity of the scaling law. Work in determiningτeff is therefore desirable.

The on–off intermittency is a quite universal phenomenon observed when a particular
chaotic state looses its stability. Many studies have been devoted mainly to the statistics of
the on–off intermittency. On the other hand, the interrelation between the onset of on–off
intermittency and the geometrical structure in the state space has recently been extensively
discussed by Ottet al [7, 21].
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